Prime Ideals and Finiteness Conditions for Gabriel Topologies over Commutative Rings
نویسندگان
چکیده
منابع مشابه
ON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملPrime fuzzy ideals over noncommutative rings
In this paper we introduce prime fuzzy ideals over a noncommutative ring. This notion of primeness is equivalent to level cuts being crisp prime ideals. It also generalizes the one provided by Kumbhojkar and Bapat in [16], which lacks this equivalence in a noncommutative setting. Semiprime fuzzy ideals over a noncommutative ring are also defined and characterized as intersection of primes. This...
متن کاملPRIME IDEALS OF q-COMMUTATIVE POWER SERIES RINGS
We study the “q-commutative” power series ring R := kq[[x1, . . . , xn]], defined by the relations xixj = qijxjxi, for mulitiplicatively antisymmetric scalars qij in a field k. Our results provide a detailed account of prime ideal structure for a class of noncommutative, complete, local, noetherian domains having arbitrarily high (but finite) Krull, global, and classical Krull dimension. In par...
متن کاملCommutative Ideal Theory without Finiteness Conditions: Primal Ideals
Our goal is to establish an efficient decomposition of an ideal A of a commutative ring R as an intersection of primal ideals. We prove the existence of a canonical primal decomposition: A = ⋂ P∈XA A(P ), where the A(P ) are isolated components of A that are primal ideals having distinct and incomparable adjoint primes P . For this purpose we define the set Ass(A) of associated primes of the id...
متن کاملCommutative Ideal Theory without Finiteness Conditions: Completely Irreducible Ideals
An ideal of a ring is completely irreducible if it is not the intersection of any set of proper overideals. We investigate the structure of completely irrreducible ideals in a commutative ring without finiteness conditions. It is known that every ideal of a ring is an intersection of completely irreducible ideals. We characterize in several ways those ideals that admit a representation as an ir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1992
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181072739